Deconstructing Material Implication
Oscar Pereira*

Abstract. This is a polished version of a note I once wrote for CS un-
dergrads, who were suffering from the very common confusion of not
understanding why the logical connective “implication” is defined the
way it is. The reasons for that are not easily found in the literature, and
this text purports to fill that gap!

Additionally, a couple of examples are given of how implication is
used in mathematics: first a especially contrived one using first order
logic (82), then the different forms that the induction principle can take
(83), and finally proofs by contradiction (§4).
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1 Introduction

Table 1 below displays the logical connective usually named implication
(or sometimes, material implication). When one first learns logical connec-
tives, it is only natural to assume that a connective named “implication”
will function according to the meaning that word has in everyday lan-
guage, viz., that there exists a causal relation between ¢ and .

e lble—=Y
olo0] 1
01 1
110 0
111 1

Table 1: Truth table for the implication logical connective. As is customary, O denotes
logical falsehood, and 1 logical truth.

Such an assumption is, however, wrong. After all, a truth table de-
scribes a well-defined mechanical procedure, which stays the same whether
or not there exists causality between ¢ and 1. And furthermore, if the
role of the connective — was really to ascertain that ¢ somehow causes
1V, then how to explain the first two rows in the table, that apply when
the antecedent is false?
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So what does the logical connective of implication actually represent?
To this author, it is a prime example of a situation where being (math-
ematically) lazy is the right thing to do. Indeed, as causality is just too
complicated to establish, mathematicians just ignore it—yes, you read that
correctly—giving a definition of implication that does not take it into ac-
count. And the reason this makes sense, is because despite being a fixed
rule, it has the following notable property: whenever there is a causal re-
lation between ¢ and 1 (i.e. if ¢ happens, then so does 1), irrespective
of how that is to be ascertained, then the logical connective — works as
expected.

What does this mean? That when ¢ — 1 has the value 1, and a
causal relation exists as described, then the respective truth table lines
are coherent with the intuition for causality. Indeed, if the antecedent
() is true, the consequent () must necessarily also be true (last line
of the truth table). And when a causal relation exists, if the antecedent
is false, then, whether the consequent is true or false, the causal relation
is unaltered (i.e. it continues to exist). This explains the first two lines
of the truth table. As for the third line, note that, while it is usually not
trivial to determine when causality does exist, it is dead easy to note when
it cannot exist: if the antecedent is true and the consequent is false, then
most certainly the former does not cause the latter—which means ¢ — ¥
must have the value 0.

And what about situations where we do not know whether or not
there is a causal relation between ¢ and {)? Here we cannot have ¢ be
true and 1\ be false—for in this case, we would know that causality does
not exist. But if any of the other three possibilities occur, then causality
might exist, or it might not: we simply do not know. For the reasons
explained above—coherent behaviour when causality does exist—in all of
these three scenarios, the value of @ — 1 is 1. In other words, @ —
means that having ¢ be the cause of { is not impossible, because ¢ being
true and 1\ being false never happens.

Alternative formulations. It is a simple matter to verify that ¢ — 1 is
logically equivalent to both —=¢@ V 1 and —p — —¢. The latter one is
called the contrapositive, and it will be mentioned several times in what
follows, beginning right below. The former affords us yet another way of
thinking about of @ — 1, namely, as meaning that “either ¢ does not
happen, or \p happens, or both”

Implication in prose. We finish this section with a brief detour into
language. Statements like ¢ — 1 can be read in a slew of different ways:
besides “¢ implies 1\ we can also have “if @, then V) “i, if @) “UP
follows from @) or “@ only if \? To see why this last one makes sense,
note that saying that ¢ happens only if \» also happens, is tantamount to
saying that if \p does not happen, then neither can ¢ (for otherwise, if ¢
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were to happen, so should 1\, which is against the assumption that 1\ does
not happen). The latter condition, ™) — — is, via the contrapositive,
equivalent to @ — 1.

Finally, if we have “¢, if{p” and “ only if1{}’ we can combine them to
get “¢ if and only if \)” often shortened to “¢ iff \p) for the biconditional:

@ ).

2 A Practical Example

Here is a good example to test one’s understanding of the mathematical
meaning of the implication connective, due to Tim Gowers [2]. Given an
interval X of real numbers, its diameter is defined as the largest absolute
difference of any of its elements, i.e. diam(X) = sup [x — yl, for all x, 4
in that interval. The following proposition is then clearly true:?

(Vx € X |x|] < 1) — diam(X) < 2

However, using the properties of first order logic, we can rewrite the exact
same statement in another way. Begin by rewriting the implication as a
disjunction:

—(vx € X [x| <1)Vdiam(X) <2

Now, the negation of an universal quantifier, is an existential quantifier:
to say that it is not true that for all x, P(x) holds, is to say that there exists
at least one x such that P(x) is false, i.e., such that —=P(x) is true. Hence
the above disjunction can be written as:

(HX eX —(jx] < 1)) V diam(X) < 2

However, diam(X) < 2 does not depend on the quantified variable x,
meaning its truth value is not affected by whatever x turns out to be.
Hence, we can pull it inside the scope of the quantifier:®

(Ix € X —(]x] < 1)V diam(X) < 2)
And finally, we turn this disjunction into an implication:
(Ix e X (|x] 1) — diam(X) < 2)

This last statement, though mathematically correct, is clearly nonsense
when the implication is taken to have its everyday meaning: there is no
way in the diameter of an interval X depends on the absolute value of
only one of its elements! If the reader can understand the meaning of the
statement above, he will have a good grasp of what mathematicians mean
when they talk about “implication” The note at the end of the current
sentence provides the answer, but the reader will profit from attempting
to answer it himself first, before looking at the solution?
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3 Another Example: The Induction Principle

The example in the previous section was especially contrived to illustrate
the difference between the mathematical (actually, the logical) definition
of “implication;” and its everyday usage. However, in mathematical prac-
tice, we have seen that the most important aspect to keep in mind, is that
@ — 1 is true means that when @ is true, 1 cannot be false—and thus,
must also be true. A good non-contrived example of the use of implication
in mathematics is the notion of a proof by induction. It has three equivalent
formulations:

1. Weak induction. If a proposition ¢(n) holds for 0, and we have
@(m) = @(n+ 1), then @(n) holds for all n € IN.

2. Strong induction. If a proposition @ (n) holds for 0, and we have
(@O) A @(T)A---AN@n)) — @(n+1), then ¢(n) holds for all
n € IN.

3. Well-ordering principle (WOP). Given any subset S of IN, if it is
nonempty, then it has a smallest element.

Each of the statements relies on implications, and in fact, weak and
strong induction use “double” implications, in the sense that in both cases,
the antecedent consists of two hypothesis, one of which is itself an implica-
tion. Furthermore, saying all three statements are equivalent means that
they all imply one another. It should be easy to see that weak induction
implies strong induction, but the converse is not so obvious—and neither
is how the WOP implies either form of induction, or vice-versa. We will
show this by proving that strong induction implies that WOP, and the
WOP implies weak induction. To see how this proves their equivalence
requires the following lemma.

Lemma 3.1 (Transitivity of implication). Let @, ), T be propositions, and
suppose that @ — \p and\p — 1. Then ¢ — T.

Proof. The lemma is an implication, and it cannot be false because it
is not possible to have the antecedent be true and consequent be false.
Indeed the latter means ¢ — T is false, i.e., @ is true and T is false. But
then, if 1\ is true, \p — Tis false, and if \ is false, ¢ — 1) is false. In either
case, the antecedent of the lemma is also falses—which means the main
implication, i.e. the lemma, cannot be false. This gives the proof. |

Going back to induction, if we prove that strong induction implies the
WOP, and that the WOP implies weak induction, then by lemma 3.1 we
will have proven that strong induction implies weak induction.

Lemma 3.2. Strong induction implies the well-ordering principle.
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Proof. Let S be a subset of IN, and suppose it has no smallest element.
Then O ¢ S, for otherwise O would be the smallest element. But then, also
1 ¢ S, because then 1 would be the smallest element. Let P(n) be the
propositionn ¢ S. Itis clear that (P(O)/\P(] )\ -/\P(n)) — P(m+1).
By strong induction, P(n) is true for all n € IN—i.e., S is empty. By the
contrapositive, if S is nonempty, it has a smallest element. |

Lemma 3.3. The well-ordering principle implies weak induction.

Proof. Let @(mn) be a proposition for which the hypothesis of weak in-
duction apply, namely, ¢ (0) is true, and @ (n) — @(n + 1) holds. Then
@(n) is true for all n € IN. To see this, let S be the subset of IN defined
as follows {n € IN: @(n) is false}. S cannot have a smallest element, be-
cause if one such element existed, call it m, then as ¢ (0) holds, we would
have m > 0, and thus m — 1 < 0 and moreover, @ (m — 1) would be
true—otherwise m — 1 would be in S. But @(m — 1) would then imply
that ¢ (m) holds, which is contradictory. Hence, S is empty, meaning
@(n) is indeed true for all n € IN. |

If the reader could follow this section without difficulty, he is now
ready to embark on a more abstract topic.

4 Implication And Mathematical Proofs

Not all mathematical theorems are explicitly of the form ¢ — 1, but we
can think of any theorem as an implication, in the following sense: each
theorem depends on a set of hypothesis—if this were not so, the “theorem”
would in fact be an axiom. Hence, for any theorem T, it will depend on
hypothesis Hy, ..., H;, and proving the theorem means showing that the
theorem being false, whilst the hypothesis are true, cannot happen. This
is tantamount to proving that (H1 VARERWAN Hn) — T holds.

Furthermore, we can now restate one important proof technique—
the so-called proof by contradiction, or reductio ad absurdum—in terms
of the implication logical connective, and more concretely, in terms of
the contrapositive. Recall that in a proof by contradiction, we assume
the opposite of what we want to prove, and derive a contradiction. As
far as I am aware, the contradiction to be derived can always be seen as
belonging to (possibly more than) one of the following cases:

1. Contradict something. This is the more general form of a proof by
contradiction: to prove theorem T, assume —T and derive falsum, i.e., a
condition of the form 11 /\—. This means we show ((/\ Hi) A —1) —
(n/A\—m). Via the contrapositive (and because double negation equates
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no negation) we obtain (mV n) — (—=(AHi)V1). As the an-
tecedent is always true, so must the consequent, which we can rewrite
as (/\ Hi) — t—i.e., we prove theorem T.

2. Contradict one of the hypothesis. To prove T, we assume —T, and
show it implies =H; V —H; \V - - -V —H,,. This is the contrapositive
of (H1 VANCERWAN Hn) — T, and on the first step, we implicitly assume
its negation, (H1 VANCERWAN Hn) /\ .

3. Contradict the antecedent. This is a particular form of the previous
case: when T is of the form ¢ — 1, we take ¢ as one of the hypothesis,
and then assuming —), we show that —¢ holds. This establishes its
contrapositive ¢ — 1, which is what we wanted to show. Note that
we again begin by assuming its negation, i.e., @ /\ —.

The proof of lemma 3.3 can be seen as an example of case 3: we show that
if there exists an m such that ¢ (m) is false, then assuming the hypothesis
that @ (0) holds, the hypothesis @ (1) — @(n+ 1) must be false, because
we have @(m — 1) /A —@(m). It can also be seen as an example of case
1, because assuming ¢ (m) is false, we derive that ¢(m) is true.

Remark 4.1. Case 1 above can also be understood without recourse to the
contrapositive: if the implication ((/\ Hi) A—1) — (n /A —m) is always
true, and the consequent is always false, then the antecedent must also
always be false—which of course means that its negation, — (/A Hi) V' T,
must always be true, or equivalently, that (/\ H;) — T must be always
true. JAN

Notes

1. There might be other reasons—besides the one put forth in the present text—to
define material implication the way it is defined, but in my experience this one usually
suffices to satisfy students’ curiosity. Moreover, as van Dalen writes, ‘[t]here is no com-
pelling reason ... to stick to the notion of implication that we just introduced [cf. table
1]. Various other notions have been studied [but] for mathematical purposes our notion
... is, however, perfectly suitable.” [1, p. 16f].

2. Vx € Xis read “for all x in (belonging to) X (some property holds)” Jx € X is
read “there exists (at least) one x in X (such that some property holds)”

3. In case this step is not entirely clear, here is a more detailed explanation. Say P
is a proposition that does not depend on x. If it is true, than so is 3x P: one can just
pick any x one wants! And if P is false, then so is again Jx P: regardless of what x one
chooses, P continues to be false—which of course means that 3x P is also false.

4. To say that there exists an x € X such that the implication (|x| < 1) — diam(X) <
2 is true, simply means that either there is an X such that the antecedent is false—i.e.,
an x such that |x| > T1—or, this not being the case (i.e., if for all x € X, |x| < 1), then
the consequent must hold. It should be clear to see that this is a correct statement.
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