
Modular Arithmetic:
A Simple Introduction

Óscar Pereira*

Abstract. When I first learned this topic, I remember thinking that the usual
way it was presented in books and lecture notes, was needlessly complicated.
Years later I had to teach it to undergrads—and began noticing that they
were thinking the same way as my younger self had. Thus I wrote a small
note explaining modular arithmetic the way I would have liked it had been
explained to me—and what follows is the polished version of that text.
Keywords: integer division, divisibility, modular arithmetic, Euclidean al-
gorithm.

1 Integer Division
We recall the notions of divisibility and integer division—which are the foundational
concepts on top of which modular arithmetic is constructed.
Definition 1.1 (Divisibility). Given two integers a and b, we say that a divides b,
or equivalently, that b is a multiple of a, if there exists an integer k such that b = ka.
In which case we write a | b.
Theorem 1.2 (Integer division). Given integers a and b > 0, there exist unique
integers q and r, with 0 ≤ r < b, such that a = bq+ r.

The proof is not needed to understand the sequel, and can be omitted on a first
reading.

*CONTACT: {https://, oscar@}gd7.eu. DATE: October 23, 2025.
Updated versions of this document and other related information can be found at https://gd7.
eu/scholarship/intro-mod-arithmetic.

https://gd7.eu/scholarship/intro-mod-arithmetic
https://gd7.eu/scholarship/intro-mod-arithmetic

§1 – Integer Division 2

Proof. Consider the set S = {a− bt : t ∈ Z ∧ a− bt ≥ 0}. S is nonempty: if
a ≥ 0, set t = 0, otherwise set t = a, to obtain a − ba = a(1 − b) which is
non-negative, because the first multiplicative factor is negative, and the other is
either zero, or negative. From the well-ordering principle,1 it follows that S must
have a smallest element; let that element be r = a − bq. We need to show that
r < b and that r and q are unique.

To show that r < b, suppose that that was not the case; i.e. suppose that r ≥ b.
Then r−b ≥ 0, and as also r−b = a−bq−b = a−b(q+1), we conclude that
r − b ∈ S. But r − b < r, and r was supposed to be S’s smallest element—which
shows our supposition that r ≥ b cannot be true. Hence, r < b.

To show the uniqueness of q and r, let q ′, r ′ be such that a = bq+r = bq ′+r ′,
with 0 ≤ r, r ′ < b. Rearranging terms we obtain r ′ − r = b(q − q ′), and thus
b | r ′− r. But −(b− 1) ≤ r ′− r ≤ b− 1, and the only multiple of b in that range
is 0—which immediately gives r ′ − r = 0⇔ r ′ = r and thus q = q ′. ■

Definition 1.3. Given two integers a and b, not simultaneously zero, their greatest
common divisor (gcd) is the greatest integer d such that it divides both a and b.

The set of divisors of any integer other than zero is always finite: indeed, no
divisor of any nonzero integer a can be either greater than |a|, or smaller than
−|a|. Hence, when a and b are both nonzero, any common divisor of both can-
not be either greater than min(|a|, |b|), or smaller than max(−|a|,−|b|). Or put
differently, the set of common divisors of nonzero integers a and b, is also always
finite. Thus, as any finite set of integers has a (unique) largest element, the gcd is
well-defined for pairs of nonzero integers. When (exactly) one of a or b is zero,
it is straightforward to see that gcd(a, 0) = gcd(0, a) = |a| holds for any inte-
ger a 6= 0. The remaining case—gcd(0, 0)—we leave undefined. The following
remark is also immediate.
Remark 1.4. The greatest common divisor, when defined, is always positive. 4

Proposition 1.5. Let a and b be two integers (not both zero). Then gcd(a, b) is the
smallest positive integer that can be expressed as a linear combination of a and b.

Proof. Consider the set S = {r, s ∈ Z|ar+ bs ≥ 1}. This set is not empty (e.g.
make r = a and s = b); thus by the well-ordering principle, it contains a smallest

§1 – Integer Division 3

element. Let d = ax+by be that element. Dividing a by d, we get a = dq+r⇔
a = (ax + by)q + r ⇔ r = a(1 − xq) + b(−yq). Thus the remainder is also a
linear combination of a and b—which means that if r > 0, then r ∈ S. But r must
be smaller than d, and d is, by hypothesis, supposed to be the smallest element of
S—so r cannot belong to S. Hence we conclude that r = 0 (i.e. d | a). With b a
similar reasoning shows that d | b—and thus d is a common divisor of both a and
b.

Now we must show that every common divisor of a and b that is distinct from
d, is also smaller than d. Let d ′ 6= d be one such common divisor. If it is nega-
tive, we are done—otherwise, as we cannot have d ′ = 0, it must be the case that
d ′ is positive.2 And as any number that divides a and b must divide any linear
combination of theirs, so we must have d ′ | d. I.e., there exists k ∈ Z such that
d ′k = d—and as d ′ and d are both positive and distinct, so must k be not only
positive, but also greater than 1, entailing that d ′ < d. ■

The next corollary follows immediately from the proof above (the next two
corollaries both assume that gcd(a, b) is defined).

Corollary 1.6. Every common divisor of both a and b divides gcd(a, b).

Corollary 1.7. gcd(a, b) = ax+ by for some (non-unique) x, y ∈ Z.

Proof. We need only address the non-uniqueness of x and y; the rest follows from
(the proof of) proposition 1.5. We have, for instance: gcd(a, b) = ax + by =
ax+ by+ ab− ab = a(x+ b) + b(y− a). ■

How does one find these x and y values is the topic of §4.

Proposition 1.8. gcd(a,n) = d if and only if gcd(a+kn,n) = d, for any k ∈ Z.

Proof. The proof follows from the fact that any common divisor of a and n, is
also a common divisor of a + kn and n (the verification is straightforward), and
vice-versa (which we show explicitly). Let t be a common divisor of a + kn and
n, which means there exists integers v and r such that a + kn = tv and n = tr.
Plugging the latter into the former we have a + k(tr) = tv ⇔ a = t(v − kr)—
meaning t is also a divisor of a, and thus a common divisor of a and n. ■

§2 – Equivalence Classes 4

2 Equivalence Classes
Two integers that, divided by the same positive integer n, leave the same remain-
der can be considered “equivalent,” in a sense—which is precisely specified by the
following definition.
Definition 2.1 (Equivalence relation). Given a non-empty set S, a binary relation
on S—meaning a non-empty subset R of S×S—is said to be an equivalence relation
if it verifies the following properties:
• Reflexivity: (a, a) ∈ R, for all a ∈ S.
• Symmetry: (a, b) ∈ R→ (b, a) ∈ R.
• Transitivity: ((a, b) ∈ R∧ (b, c) ∈ R

)→ (a, c) ∈ R.
What one tries to capture in this definition, is a generalisation of the notion of

equality, from elements (the integers) to sets of elements (the equivalence classes,
see below). In the case of the integers, the binary relation we are thinking about is
the so-called congruence relation.
Definition 2.2 (Integer congruence). Given a positive integer n—hereinafter called
themodulus—and any two integers a, b, they are said to be congruent modulo n if
and only if n | b − a. In which case we write a ≡ b (mod n) or a ≡n b—or, if the
modulus is clear from context, just a ≡ b.
Proposition 2.3. Integer congruence is an equivalence relation as per definition 2.1.
Proof. Reflexivity and symmetry are obvious; as for transitivity, note that a ≡ b

(mod n) if and only if there exists an integer k such that b = a+kn. Hence from
a ≡ b and b ≡ c we have b = a + kn and c = b + k ′n—and replacing b in
the latter equation gives us c = (a + kn) + k ′n = a + (k + k ′)n, which means
a ≡ c, as was to be shown. ■

Given an equivalence relation R over a set S, the equivalence class of an
element a of S is the set {b ∈ S : (a, b) ∈ R}. In the case of integer congruence,
the equivalence class (modulo n) of an integer a is the set of all integers b such that
a ≡ b (mod n)—which we shall represent by [a]n, again omitting the modulus
information when redundant. The integer a is called the representative of the
equivalence class (any other integer belonging to the same class can also be used
as a representative of that class).

§2 – Equivalence Classes 5

Remark 2.4. It is not particularly useful to have a modulus of 1 (even though it is
allowed by definition 2.2): given that the difference between any two integers is
always a multiple of 1, we just get one (very) big equivalence class, namely all of
Z. 4

Proposition 2.5. The equivalence classes induced by an equivalence relation are pair-
wise disjoint.

Proof. I will prove this for the specific case of integer congruences, but the more
general proof is virtually identical. Suppose [a]n and [b]n had a common element,
let us say, the integer c. By definition this means that modulo n, both a ≡ c and
b ≡ c hold—entailing, via transitivity, that also a ≡ b. Now let a ′ ∈ [a]n ⇔ a ′ ≡
a. Again by transitivity comes a ′ ≡ b ⇔ a ′ ∈ [b]n, showing that [a]n ⊆ [b]n.
Via a similar reasoning one shows the reverse inclusion, thus establishing that if
two equivalence classes are not disjoint, they are equal. ■

Thus each equivalence class of R is a subset of S, and because each element
of S belongs to exactly one equivalence class, the set of all equivalence classes
constitutes a partition of that set. I.e., the equivalence classes are pairwise disjoint,
and their union yields the entirety of S. In particular, integer congruence modulo n
partitions the integers into n distinct equivalence classes, which we can represent
via the integers 0, . . . , n − 1: [0] , . . . , [n− 1]. To see this, note that the integers
that are congruent to 0, are precisely the multiples of n; those that are congruent to
1 are the integers that can be written as 1+kn, for some integer k, and so on. The
fact that any integer belongs to one of those classes follows from the fact that by
theorem 1.2, the remainder of division byn is always one of the integers 0, . . . , n−
1. These integers are called the residues modulo n, and the set of equivalence
classes [0] , . . . , [n− 1] are the residue classes modulo n, which we will denote
by Zn. This latter set can be endowed with both addition and multiplication:3

Definition 2.6. Given a modulus n and integers a, b, we define addition in Zn as
[a]n + [b]n = [a+ b]n. Multiplication in Zn is defined similarly: [a]n [b]n = [ab]n.

Prima facie, this seems a straightforward enough way of extending the usual arith-
metic of Z to Zn—the only catch is that we have to show that the result does not
depend on the particular class representatives (i.e., the particular integers) chosen.
This is taken care of by the next result.

§2 – Equivalence Classes 6

Proposition 2.7. With modulus n, suppose that a ≡ a ′, and b ≡ b ′. Then [a]n +
[b]n = [a ′]n + [b ′]n and [a]n [b]n = [a ′]n [b

′]n.

Proof. By hypothesis we have a ′ = a+ k1n and b ′ = b+ k2n, for some integers
k1 and k2.

• Addition. We need to show that [a+ b]n and [a ′ + b ′]n are the same equiva-
lence class, which is tantamount to showing that a+ b ≡ a ′ + b ′ (because this
establishes that they are not disjoint, and thus are equal by proposition 2.5). We
have: a ′ + b ′ = (a + k1n) + (b + k2n) = (a + b) + n(k1 + k2), entailing
a+ b ≡ a ′ + b ′.

• Multiplication. We need to show that [ab]n and [a ′b ′]n are the same equiva-
lence class, which is tantamount to showing that ab ≡ a ′b ′. We have: a ′b ′ =
(a+k1n)(b+k2n) = ab+ak2n+k1nb+k1nk2n = ab+n(ak2+k1b+k1nk2),
and thus ab ≡ a ′b ′.

And we are done. ■

Excursus. When I first learned this subject, I wondered if the arithmetic of congru-
ence equivalence classes could serve as an indication of how to decompose integers.
For example, if r ∈ [a+ b]n, then there always exist integers s, t such that r = s+t

and s ∈ [a]n and t ∈ [b]n. For we have r = a+b+kn for some integer k, which
we can always rewrite as, for example, r = (a+ 3n) + (b+ (k− 3)n). However,
after some trying I discovered an example with modular multiplication where this
does not happen: [3]5× [4]5 = [12]5 = [2]5—but 7 ∈ [2]5 is a prime, and so cannot
be written as a product ab, with a ∈ [3]5 and b ∈ [4]5.

The explanation is that the property just described for modular addition… is an
extra: something that is not required for said operation to be well-defined. For a
binary operation is nothing more than a function (that, in the particular setting of
both modular addition and multiplication, has the signature Zn×Zn 7→ Zn). And
so, for it to be well-defined, all that is needed is for any given pair of equivalence
classes to uniquely correspond (“map”) to a well-defined target equivalence class—
a result that follows from definition 2.6 together with proposition 2.7.

§3 – Linear Congruences 7

3 Linear Congruences
It should be clear to the reader that the “worlds” of Z and Zn are “linked,” if you
will, by the following property: a ≡ b (mod n) if and only if [a]n = [b]n—and
arithmetic in Zn can aid us in better understanding some properties of congruences
(which “inhabit” the realm of Z). Firstly, if [a]n = [b]n, then for any integer
c, we also have [a]n + [c]n = [b]n + [c]n and [a]n [c]n = [b]n [c]n—otherwise,
the operations would not be well-defined. Or equivalently, we have [a+ c]n =
[b+ c]n and [ac]n = [bc]n. But given any c ′ such that c ′ ≡n c, we can add (or
multiply) [c]n on one hand side, and [c ′]n on the other—because they are equal—
and similarly conclude that [a]n = [b]n also implies [a+ c]n = [b+ c ′]n and
[ac]n = [bc ′]n. What does this mean in terms of congruences? That a ≡n b

implies a + c ≡n b + c ′ and ac ≡n bc ′, where c and c ′ needn’t be equal, but
only modularly equivalent. For example, modulo 11 we have 3 ≡ 14, and if we
multiply the left hand side by 13, and the right hand side by 2, we obtain 39 ≡ 28,
which the reader will easily verify to be true. Or for addition, add 24 and 2 to the
left and right sides respectively, obtaining 27 ≡ 16.

Secondly, take any congruence—say, ab + c ≡ d (mod n), with a, b, c, d

integers. We can rewrite it in terms of equivalence classes: [ab+ c]n = [d]n ⇔
[a]n [b]n + [c]n = [d]n. But given integers a ′, b ′, c ′, d ′ equivalent respectively,
modulo n, to a, b, c, d, we can write the same thing as: [a ′]n [b

′]n + [c ′]n =
[d ′]n ⇔ [a ′b ′ + c ′]n = [d ′]n—which, translates back to a congruence as a ′b ′ +
c ′ ≡ d ′. Meaning that given any congruence, we can replace any one of the
integers in it with equivalent ones, and preserve the equivalence.4

In practice, we usually replace an integer a with its residue modulo n (which,
recall, is the remainder of its division by n)—customarily denoted by a mod n.
That both are equivalent is an immediate consequence of the fact that by integer
division, there exists an integer q such that a mod n = a − nq. In fact, we have
the following result.
Proposition 3.1. a mod n = b mod n if and only if a ≡ b (mod n).
Proof. (→) a mod n = b mod n implies a mod n ≡n b mod n, which in turn
implies a ≡ b (mod n), because we have both a ≡n (a mod n), and b ≡n (b
mod n).

(←) Via the same reasoning as above, a ≡ b (mod n) also implies (a mod
n) ≡n (b mod n). This means that (a mod n)−(b mod n) has to be a multiple of

§3 – Linear Congruences 8

n—but as both residues belong to the set {0, 1, . . . , n− 1}, their difference belongs
to the set {−(n− 1), . . . ,−1, 0, 1, . . . , n− 1}. The only multiple of n in that set is
0—which means that the equivalence between a mod n and b mod n, is actually
equality. ■

Let us now consider a real linear congruence, say, 19x ≡ 9 (mod 7), x being
an unknown. Observe that in line with out discussion above, x is an integer but the
solution to this congruence is not a single integer, but an entire equivalent class: if
a is a solution, then so is any integer in [a]7. And as just explained, the first thing
we can do is replace all numbers by their residues, obtaining 5x ≡ 2. If this were an
“ordinary equation,” we would multiply both sides by the (multiplicative) inverse
of 5 (more on this below). And here we will do the same, but with 5’s modular
inverse, i.e., a number such that, when multiplied by 5, yields a result congruent
with 1, modulo 7. Said number is 3: indeed, 3×5 = 15 ≡ 1 (mod 7). Multiplying
both sides we obtain 15x ≡ 6 ⇔ x ≡ 6, meaning the solution is any integer in
[6]7—as the reader can quickly verify.5

Of course, now new questions pop up: does such an inverse always exist? If
not, in what circumstances does it exist? How do we find it? We have the following
result.

Proposition 3.2. For any integer a and modulus n, a is invertible modulo n if and
only if gcd(a,n) = 1—i.e., if they are relatively prime.

Proof. We require the properties of the gcd proved in §1. For the forward direc-
tion, note that if b is a’s modular inverse, this means we have ab + nk = 1, for
some integer k. But as the gcd is the smallest positive integer that can be written
as a linear combination of a and n, it must be the case that gcd(a,n) = 1. The
backward direction is easy: if gcd(a,n) = 1, there exist integers x, y such that
ax+ ny = 1—and thus, x is a’s modular inverse. ■

This takes care of the first two questions—and by now, we have already (partly)
answered the last remaining question, viz. how to compute modular inverses: given
co-prime integers a and (the modulus) n, to find the former’s inverse we write
gcd(a,n) as a linear combination a and n—and the modular inverse is the weight
of a. One way of doing this is via the so-called extended Euclidean algorithm, which
we describe in the next section.6

§3 – Linear Congruences 9

Before that, though, we can again lean on Zn to better grasp the concept of
modular inverse. If it were an equation in Q or R, then as stated above, solving
5x = 2 would be a simple matter of multiplying both sides by 1/5, the multiplica-
tive inverse of 5. What this means is that 1/5 is the number that, when multiplied
by 5, yields 1—which is the multiplicative identity of both Q and R, meaning that
the result of multiplying any number by 1, is that number. The same is true in Zn,
and in particular in Z7: multiplying any element by [1]7, yields that element. And
the element by which we must multiply [5]7, to obtain [1]7, is precisely [3]7.

Restating the congruence we wanted to solve in terms of residue classes makes
clear that we did (essentially) the same thing one does to solve identical equations
in Q or R. We have [5]7 [x]7 = [2]7, and multiplying both sides by [3]7 yields (we
omit the module):7

[5] [x] = [2]⇔ [3] [5] [x] = [3] [2]⇔ [15] [x] = [6]⇔ [1] [x] = [6]

which is simply [x]7 = [6]7, or in congruential terms, x ≡ 6 (mod 7)—precisely
the result we got above.

Lastly, if 5 is invertible modulo 7, then any integer in [5]7 is also invertible.
Indeed, as 5 × 3 ≡7 1, then courtesy of the above discussion, we also have that
a × 3 ≡7 1 holds, for any integer in a ∈ [5]7. By symmetry, it also follows that
any integer in [3]7 is invertible.8

The restriction on modular inversion imposed by proposition 3.2 has two con-
sequences:
• First, not all congruences are solvable, because for a congruenceax ≡ b (mod n)
to be solvable (x being the unknown), means that b can be written as a linear
combination of a and n, i.e., that we have integers x, y such that b = ax+ny—
which is only possible if gcd(a,n) | b. It follows that if gcd(a,n) = 1, the
congruence is solvable for any integers b and a 6= 0.
For example, 2x ≡ 5 (mod 6), has no solution, for 5 is not a multiple of 2 =
gcd(2, 6)—otherwise there would exist integers x and k such that 2x+ 6k = 5,
entailing that 2 | 5, which is false. However, 2x ≡ 4 (mod 6) does have a
solution, because 4 is a multiple of gcd(2, 6). To find it, we do the same that we
do to find the modular inverse: write gcd(2, 6) as a linear combination of both
numbers, i.e., gcd(2, 6) = 2 = 2 × (−2) + 6 × 1. Multiplying both sides by 2,

§4 – Euclid’s Algorithm(s) 10

we obtain 4 = 2× (−4) + 6× 2—meaning the solution is x ≡ −4 (mod 6), or
to use the corresponding residue, x ≡ 2 (mod 6).

• Second, it explains why we cannot always “cancel” multiplicative9 factors: if
[a]n = [b]n, then for any integer c we always have [c]n [a]n = [c]n [b]n—but the
converse is false! For example again using modulus 6, we have [2] [3] = [2] [12]
(because 6 ≡ 24), but [3] 6= [12] (as 3 6≡ 12)! This is because 2 has no modular
inverse modulo 6, as gcd(2, 6) = 2 6= 1. And so, there is no equivalence class in
Z6 that when multiplied by [2]6, yields [1]6.10

Integers and congruences vs. Zn. Especially in more advanced algebra texts, it
is common to see the set Zn defined as {0, 1, . . . , n− 1}. This is done for conve-
nience: the elements of Zn are still the residue classes, but when there is no ambi-
guity, they are denoted by their canonical representatives. As we saw above, the
congruence 5x ≡ 2 (mod 7), where 5, 2 and x represent integers, can be written
as [5]7 [x]7 = [2]7, omitting the modulus if clear from context. In more advanced
books however, this could be written simply as 5x = 2, with 5, 2, x now being
elements of Z7.11

4 Euclid’s Algorithm(s)
Let a, b be two different positive integers, and assume that a > b. The key to
understand how to compute the gcd, is the following: due to integer division, we
can write a = bq + r, and thus conclude that any common divisor of b and r

also divides a—but conversely, as we also have r = a − bq, any common divisor
of a and b also divides r. And so, gcd(a, b) = gcd(b, r). Now if r = 0 we are
done—gcd(a, b) = b—but otherwise, we can do integer division of b by r, to
obtain b = rq ′ + r ′—and observe similarly that gcd(b, r) = gcd(r, r ′). We can
continue this process until we obtain a remainder of 0, which must necessarily
happen after a finite number of divisions, because the sequence of remainders is
strictly decreasing, and lower-bounded by 0. Suppose r ′′′′ = 0, meaning the last
nonzero remainder was r ′′′. As we have r ′′ = r ′′′q ′′′′+r ′′′′, this means r ′′′ | r ′′, and
so gcd(r ′′, r ′′′) = r ′′′ (note that being nonzero, r ′′′ must be positive). Which means
that we also have gcd(a, b) = r ′′′. This, then, is the “regular” Euclidean algorithm:
just compute successive divisions until you get to the last nonzero remainder, which
will be the envisaged gcd.

§4 – Euclid’s Algorithm(s) 11

To get from here to the so-called extended Euclidean algorithm, the goal of
which is to write gcd(a, b) as a linear combination of a and b, we just work in
reverse through the list of remainders, until we get to a and b. (Henceforth we
will refer to the first and second parts of the extended Euclidean algorithm: the
first part is the one that is equal to the regular Euclidean algorithm—successive
divisions to ascertain the gcd—and the second part is the going back through the
list of remainders to obtain the sought out linear combination.) To simplify the
notation, let r0 := a and r1 := b, and suppose we have:

• r0 = r1q1 + r2 • r1 = r2q2 + r3 • r2 = r3q3 + r4

with r4 being the last nonzero remainder. This means we have gcd(a, b) = r4 =
1× r2 + (−q3)× r3). Because we can write r3 as a function of r2 and r1, it should
be clear to see that we can eliminate r3 from that expression, leaving gcd(a, b)
written as a linear combination of r2 and r1. And carrying out the same process
with r2 we can eliminate it, and finish with the gcd as a linear combination of r1
and r0—which is the desired result.

But to be able to code this algorithm—which is the end goal—we must be both
more generic and more explicit. So suppose we are at a point where we have the
gcd written as a linear combination of ri and ri+1, i.e. we have something like
gcd(a, b) = ciri + ci+1ri+1. As exemplified in the previous paragraph, the next
step is to leverage the fact that we can write ri+1 in terms of ri−1 and ri, to get the
gcd written as a linear combination of ri−1 and ri. From ri−1 = riqi + ri+1 comes
ri+1 = 1× ri−1 + (−qi)ri, and we now have:

gcd(a, b) = ciri + ci+1ri+1

= ciri + ci+1

(
1× ri−1 + (−qi)ri

)
= ci+1ri−1 +

(
ci + qi(−ci+1)

)
ri

(4.1)

Observe that in each iteration we always deal with two remainders, one with a
lower index and another with a higher one: in (4.1) above, we start with ri and ri+1,
and end with ri−1 and ri. However, to implement Euclid’s extended algorithm in
code, we don’t need the actual reminders—all we need are their respective weights:
for as we know how these change from one iteration to the next—this is what (4.1)

§4 – Euclid’s Algorithm(s) 12

describes—we can compute sequentially the weights all the way up to the weights
of r0 and r1, which values we do know (they are a and b, respectively).

The only thing missing to understand the code below, is to illustrate the “kick-
start” of the second phase of the algorithm (i.e., the one that starts after we have
the value of the gcd—cf. line 45). So suppose that rn is the last nonzero remainder
(i.e., it is the gcd); we have: rn−2 = rn−1qn−1+rn ⇔ rn = 1×rn−2+(−qn−1)rn−1.
In the code below, the coefficient for the lower index remainder is called cl, and
the one for the higher index remaider is ch—and hence, it should now be clear
that the first iteration yields cl := 1 and ch := (−qn−1). This is exactly what is
done in lines 47 and 48 below. The quotients are stored during the first phase of
the algorithm, by appending them to a list (line 40).12 And are removed, during the
second phase, in reverse order of insertion (the so-called LIFO: “Last In, First Out”).
To understand the reason for reverse order, note that the first quotient to be used
in the second phase of the algorithm, is qn−1—which is the last quotient produced
during the first phase.13 And what is the next quotient to be used? Well, qn−2, as
we now show. The next step is to write rn−1 in terms of rn−2 and rn−3, so as to
end up with the gcd written as a linear combination of these two latter values. We
have rn−3 = rn−2qn−2 + rn−1 ⇔ rn−1 = 1× rn−3 + (−qn−2)rn−2. This originates
the following transition:

• Old: rn = 1× rn−2 + (−qn−1)rn−1

• New: rn = (−qn−1)rn−3+(1+qn−2qn−1)rn−2

The reader is welcomed to check the math, but we followed the rule outlined
above at (4.1): the coefficient of the old higher index remainder, rn−1, becomes
the coefficient of the new lower index remainder, rn−3. As for the coefficient of
the new higher order remainder rn−2, it is constructed by the addition of old lower
order coefficient, 1, to the product of the symmetric of old higher order coefficient
−qn−1, and the quotient that corresponds to the index of the current remainder
(n− 2). And it is only this latter quotient, qn−2, that has to be retrieved from the
LIFO—cf. line 53. And as it is also the second to last to be added to the LIFO during
the first phase, therefrom comes the need for reverse order.
1 #! /usr/bin/python
2
3 import sys
4

§4 – Euclid’s Algorithm(s) 13

5 """
6 Invoke from the command line, with two positive integers as arguments. Prints
7 the linear combination of said integers, that yields their gcd.
8 """
9

10 a = int(sys.argv[1])
11 b = int(sys.argv[2])
12
13 if a == b:
14 print("gcd(%d, %d) = %d = %d * %d + %d * %d" % (a, b, abs(a), a, 1, b, 0))
15 sys.exit(0)
16
17 r0 = None # r_i
18 r1 = None # r_{i + 1}
19 r2 = None # r_{i + 2}
20
21 q = [] # List of quotients.
22
23 if a > b:
24 r0 = a
25 r1 = b
26 else: # a < b
27 r0 = b
28 r1 = a
29
30 r0_orig = r0
31 r1_orig = r1
32
33 r2 = r0 % r1
34
35 if r2 == 0:
36 print("gcd(%d, %d) = %d = %d * %d + %d * %d" % (r0, r1, r1, r0, 0, r1, 1))
37 sys.exit(0)
38
39 while r2 != 0:
40 q.append(r0 // r1)
41 r0 = r1
42 r1 = r2
43 r2 = r0 % r1
44
45 # r1 now contains gcd(a, b).
46
47 cl = 1 # Coefficient for lower index (r0).
48 ch = - q.pop() # Coefficient for higher index (r1).
49
50 while q:
51 cl_orig = cl
52 cl = ch
53 ch = cl_orig + q.pop() * (- ch)
54
55 # Sanity check.
56 if not r1 == r0_orig*cl + r1_orig*ch:
57 print("Error: %d NOT EQUAL TO %d * %d + %d * %d!" % (r1, r0_orig, cl,

Notes to pages 2–10 14

58 r1_orig, ch))
59
60 print("gcd(%d, %d) = %d = %d * %d + %d * %d" % (r0_orig, r1_orig, r1, r0_orig,
61 cl, r1_orig, ch))

One final note about the code above: as indicated by the comments of lines 6
and 7, this code only deals with the algorithm proper, and not with other issues
one might want to take into account, e.g. input validation, dealing with negative
numbers, etc. A fuller version of the same code, that does deal with such things (in
addition to a testing routine), is available at https://gd7.eu/scholarship/i
ntro-mod-arithmetic.

Notes
1. The well-ordering principle states that any non-empty set of non-negative integers has a smallest
element. It is an equivalent formulation to the induction principle, which is part of the axiomatic
characterisation of natural numbers (and which naturally also applies to non-negative integers).
2. Zero can only be a common divisor of integers a and b if both of them are zero—a possibility
that is disallowed by the proposition’s hypothesis.
3. For the algebra-savvy reader, Zn together with modular addition and multiplication, forms an
algebraic structure known as an abelian ring (“abelian” means the operations are commutative). It
is usually denoted (Zn,+, ·).
4. Note, however, that because equality implies equivalence (informally, “= → ≡”), we don’t
have to substitute every integer for a different one. For example, ab ′+c ′ ≡ d is also an equivalent
statement.
5. Note that [6]7 also contains negative numbers: in particular, it contains −1. And sure enough,
19(−1) − 9 = −28, which is a multiple of 7.
6. The “regular” Euclidean algorithm just computes gcd(a,n), but not their weights in the linear
combination.
7. We rely here—just as we have relied implicitly above—on the fact that modular multiplication
is associative. In fact, both modular addition and multiplication are not only associative, but also
commutative. And moreover, multiplication distributes over addition. The simplest way to show
all this, is computation in Zn. We give the proof for distributivity; the other ones are similar. We
have: [a] ([b] + [c]

)
= [a] [b+ c] = [a(b+ c)] = [ab+ ac] = [ab] + [ac] = [a] [b] + [a] [c].

8. Observe that both results also follow directly from proposition 3.2 and proposition 1.8, setting
d = 1 (and n = 7) in the latter.
9. However, we can always cancel additive factors, because for any [a]n, we always have [a]n +
[−a]n = [0]n.

https://gd7.eu/scholarship/intro-mod-arithmetic
https://gd7.eu/scholarship/intro-mod-arithmetic

References 15

10. In line with what was said above, we could have written [c]n [a]n = [c ′]n [b]n, with c ′ ≡n

c—and the exact same reasoning would apply—for [c]n and [c ′]n are equal.
11. For further discussion of this topic, the reader is referred to Shoup [2008, §2.5], especially p.
29f.
12. q1 gets appended first, then q2, and so on.
13. To see this is so, consider the particular iteration of the while loop in lines 39–43, that starts
with the variables r0, r1 and r2 already having the following values: r0 := rn−2, r1 := rn−1,
r2 := rn. rn is nonzero, so the body of the loop gets executed—and the very first task done (line
40), is to append to the end of the quotient list the quotient of the integer division of r0 by r1, i.e.
of rn−2 by rn−1. Which is precisely qn−1.
Now consider what the rest of the body does: it assigns rn−1 to r0, and rn to r1, and then proceeds
to compute rn+1, which it assigns to r2—but which has the value 0. Hence the iteration stops, and
in particular, no more quotients get added to quotient list q.

References
Shoup, Victor, 2008. A Computational Introduction to Number Theory and Algebra. New York: Cambridge University Press,

2nd edition. Electronic version available at https://shoup.net/ntb/.

https://shoup.net/ntb/

	Integer Division
	Equivalence Classes
	Linear Congruences
	Euclid's Algorithm(s)
	Notes
	References

