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One of the ways of constructing R is as a (set of) so-called Cauchy se-
quences of rational numbers. And from here, one can define raising a
(positive) real number a to a real exponent x as ax def

= limn→∞ axn, where
{xn} is a (rational) Cauchy sequence representing the real x.1 And one way
of introducing the exponential function with base e (Napier’s number), as
well as its inverse (the logarithm with the same base), is to attempt to
compute the derivative of the function ax (a being fixed and x being the
independent variable). Attempting to proceed via the classical definition
of derivative, we have:

(ax) ′ = lim
h→0

ax+h − ax

h
= lim

h→0

ax(ah − 1)

h
= ax lim

h→0

(ah − 1)

h
(1)

This appears to be a dead end, because the expression we computed for
the derivative of ax, is dependent on ax…However, it turns out that a bit
of speculation will take us a long way indeed! Let us begin by assuming
that the limit exists—i.e., that limh→0(a

h− 1)/h = β. Letting f(x) = ax

(with f : R → R+), this means that f ′(x) = β · f(x).2
Now, by the rule for the derivative of the inverse function, we have:[

f−1
] ′
(x) =

1

f ′ [f−1(x)]
=

1

β · f [f−1(x)]
=

1

βx

This of course, assumes that f is invertible, i.e., bijective—and thus,
that one can define f−1 : R+ → R. Furthermore, because of the Funda-
mental Theorem of Calculus, we have:∫ x

1

1

βt
dt = f−1(x) − f−1(1) = f−1(x)

where the last equality is because as f(0) = 1, f−1(1) = 0. The value
of β, however, remains unknown—but it stands to reason that it ought
to depend on a. Proceeding on that basis, we set β = 1 and attempt
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to determine the corresponding value of a. Relying on hindsight, let us
define

log x def
=

∫ x
1

1

t
dt and exp x def

= log−1 x (2)

where log : R+ → R and exp : R → R+. Note this means log ′ x =
1/x—thus establishing that log is continuous. An important clue that we
are on the right track is that, if the log function is invertible, then the
function exp—which is that inverse, by definition—is, as we expect, its
own derivative (which shows that exp is also continuous):

exp ′ x = (log−1 x) ′ =
1

log ′(log−1 x)
=

1

log ′(exp x) =
1

1/(exp x) = exp x

But to show that definitions in (2) are indeed proper, we must show that
log is a bijection, and is thus invertible.3 As 1/y is continuous for y ∈ R+,
the integral ∫x

1
1/t dt is well-defined for any x ∈ R+—and so, we can

define the domain of log to be R+.4 As for its range, we will show it
is all of R. We begin by observing that as, by definition, log ′ x = 1/x,
and x > 0, then 1/x > 0, i.e., log ′ is always positive, which means
log is strictly increasing. We now require (the corollary to) the following
lemma:
Lemma 3. Given positive reals a, b, we have loga+ logb = log(ab).
Proof. Let c > 0 be a real number. We have log ′(cx) = 1/(cx) · c =
1/x—meaning log ′(cx) = log ′ x. Thus there exists a constant k such that,
for all x where the derivative of log is defined, we have log(cx) = log x+
k. In particular, for x = 1 we obtain: log(c · 1) = log 1+k ⇔ log c = k.
From which log(cx) = log x+ log c. The fact that c is arbitrary completes
the proof. ■

Corollary 4. For any positive real a, we have loga−1 = − loga.
Proof. Setting b = 1/a in lemma 3 we have:

0 = log
(
a× 1

a

)
= loga+ log 1

a
⇔ loga−1 = − loga

■

Corollary 5. For any positive real x, and integer n, we have log xn =
n log x.
Proof. Forn = 0 it is obvious. Forn > 0, in lemma 3 set a = b = x, and
use induction on n. For n < 0, write log xn as log(x−1)−n. As −n > 0,
by the previous induction it follows that this is equal to −n log x−1—and
from corollary 4, this equals n log x. ■
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We can now show that the range of log is indeed R, by showing that
for any y ∈ R, the equation log x = y has always one solution (it can-
not have more than one solution, because that would mean it was not
injective—and thus not strictly increasing). To show this is so, by the
definition of log, we clearly have log 2 > 0—and thus, y/(log 2) is fi-
nite. Hence, we can find integers m,n such that m < y/(log 2) < n ⇔
m log 2 < y < n log 2 ⇔ log 2m < y < log 2n. By the Intermediate
Value Theorem, there exists x ∈ ]2m, 2n[ such that log x = y.

This shows that log is indeed a bijection—and thus, that definitions
(2) are proper. But we want to go further: log was defined as the putative
inverse of a function of the form ax, for some positive real a, and exp
being the inverse of log, we want to express it in this form as well (i.e.,
we want to find a real a such that exp x = ax). This requires the following
lemma.
Lemma 6. Let f be a continuous function, for which it holds that f(x+y) =
f(x)f(y), f(0) = 1 and f(1) = a > 0. Then f(x) = ax.
Proof. Let us first prove that it holds for positive integers (let n be one
such integer):

f(n) = f(1+ 1+ · · ·+ 1︸ ︷︷ ︸
n times

) = f(1) · · · f(1)︸ ︷︷ ︸
n times

= an

Now let us show that also holds for negative integers:
1 = f(0) = f(n+ (−n)) = f(n)f(−n)

⇔ f(−n) =
1

f(n)
=

1

an
= (an)−1 = a−n

And now for rational numbers, let m,n be integers, with n > 0. We
have:

am = f(m) = f

(
m

n
+ · · ·+ m

n︸ ︷︷ ︸
n times

)
= f

(m
n

)
· · · f(m

n
)︸ ︷︷ ︸

n times⇔ f
(m
n

)
=

n
√
am = am/n

And finally, for real numbers, let x be a real, and {xn} be a Cauchy se-
quence of rational terms, such that xn → x. Because f is continuous, we
have f(x) = f(limn→+∞ xn) = limn→+∞ f(xn) = limn→+∞ axn which is,
by definition, ax. ■

We have already established that exp 0 = 1—and so, for exp to verify
the conditions of lemma 6, it remains only to show that exp 1 > 0 and
exp(x+ y) = exp x · expy.
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To compute exp 1, exp being indefinitely differentiable and having all
the derivatives be continuous as well—recall that exp ′ = exp—means
that its Taylor series at point x = 0 converges for all x in its domain (as
exp 0 = 1, all the derivatives at x = 0 equal 1):5

exp x =

+∞∑
n=0

xn

n!

Setting x = 1, it is now immediate that exp 1 = 1+ 1+ 1/2+ 1/6+ . . .

is a positive real number, that we shall denote by e.
To show that exp(x+y) = exp x · expy, let x ′ = exp x ⇔ x = log x ′

and y ′ = expy ⇔ y = logy ′. We have:
exp(x+ y) = exp(log x ′ + logy ′)

= exp(log(x ′y ′)) (lemma 3)
= x ′y ′ = exp x · expy

Hence by lemma 6 we conclude that exp x = ex. And we are (almost)
ready to return to our initial goal of differentiating ax—but first, we need
the following generalization of corollary 5:
Lemma 7. For any positive real a and real b, we have logab = b loga.

Proof. logab = log
[(
eloga

)b]
= log (eb loga) = b loga. ■

It is now straightforward that:

(ax) ′ =
[(
eloga

)x] ′
=

(
ex loga

) ′
= ex loga · loga = ax · loga (8)

This also shows that just like exp, ax is also continuous over all of R.
Comparing this with (1), it is immediate that

lim
h→0

(ah − 1)

h
= loga

In particular, if a = e, we obtain the well-known limit

lim
x→0

(ex − 1)

x
= log e = 1

Base of a logarithm. Just as log is the inverse of exp x = ex, we can
have logarithms that are inverses for exponentials with other bases other
than e. In particular, the inverse of bx is denoted logb x. We have the
following “change of base” property:

logb a =
logc a
logc b

(9)



Notes 5

Why this holds is straightforward: logb a · logc b = logc blogb a = logc a.
And from (9) it can be easily shown that lemmas 3 and 7 also hold for
logarithms with arbitrary bases:

• logc a+ logc b = loga
log c +

logb
log c = loga+logb

log c = log(ab)
log c = logc(ab)

• logc ab = logab

log c = b loga
log c = b loga

log c = b logc a
Finally, for completeness, just as in (8) we computed the derivative of an
exponential function with an arbitrary base, here is the derivative for a
logarithm with an arbitrary base:

(logb x) ′ =
( log x
logb

) ′
=

1

x logb
Thus, just like log, the logb function is also continuous over all its

domain.

Notes
1. I have a forthcomingmanuscript on the construction of (inter alia) the real numbers,

using Cauchy sequences—and I will update this note once it is published—to which the
reader is (to be) referred for more details. For the reason why a is required to be positive,
see §3 and §4 in my essay on exponentiation rules, https://randomwalk.eu/schola
rship/exponentiation-rules-reals/.
2. Cf. note 1, in particular §3 and §4 of Exponentiation.in.R.pdf, for the reasons

why the range of f is R+, i.e., why ax is always positive.
3. Note that all the assumptions made above—in particular in (1), that the limit

limh→0(a
h − 1)/h existed—are now irrelevant. They were an aid to help us arrive

at putative definition (2), but play no role in establishing that it is a proper definition.
However, it will, in due time, be shown that they are all correct—and in particular, we
will show that the referred limit does, in fact, exist.
4. Note that by this definition log x < 0 for 0 < x < 1, log 1 = 0, and log x > 0 for

x > 1.
5. I omit here the statements and proofs of the relevant theorems. But see, e.g., §3

(and the references therein) in my manuscript on the sine and cosine functions, https:
//randomwalk.eu/scholarship/sine-cosine/.
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