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One of the ways of constructing R is as a (set of) so-called Cauchy se-
quences of rational numbers. And from here, one can define raising a
(positive) real number a to a real exponent x as ax def

= limn→∞ axn, where
{xn} is a (rational) Cauchy sequence representing the real x.1 And one way
of introducing the exponential function with base e (Napier’s number), as
well as its inverse (the logarithm with the same base), is to attempt to
compute the derivative of the function ax (a being fixed and x being the
independent variable). Attempting to proceed via the classical definition
of derivative, we have:

(ax) ′ = lim
h→0

ax+h − ax

h
= lim

h→0

ax(ah − 1)

h
= ax lim

h→0

(ah − 1)

h
(1)

This appears to be a dead end, because the expression we computed for the
derivative of ax, is dependent on ax… However, it turns out that a bit of
speculation will take us a long way indeed! Let us begin by assuming that
the limit exists—i.e., that limh→0(a

h − 1)/h = β. Let f(x) = ax (with
f : R → R+).2 Now, bit of experimenting with integers and/or rationals,
will strongly impress on us the difficulty of finding different exponents
x, y such that ax = ay—so let us further assume that f is injective. We
will go beyond this, and assume, that f is also surjective—which means
we can define f−1 : R+ → R. This is not a particularly big leap, because
in case f is not surjective, we could still define f−1, but its domain would
no longer be R+, but a proper subset of it—namely, the set of images of
R under f (i.e., the range of f).

We showed above that f ′(x) = β · f(x). Now, by the rule for the
derivative of the inverse function, we have:[

f−1
] ′
(x) =

1

f ′ [f−1(x)]
=

1

β · f [f−1(x)]
=

1

βx
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Note that, because of the Fundamental Theorem of Calculus, we have:∫ x
1

1

βt
dt = f−1(x) − f−1(1) = f−1(x)

where the last equality is because as f(0) = 1, f−1(1) = 0. The value
of β, however, remains unknown—but it stands to reason that it ought
to depend on a. Proceeding on that basis, we set β = 1 and attempt
to determine the corresponding value of a. Relying on hindsight, let us
define

log x def
=

∫ x
1

1

t
dt and exp x def

= log−1 x (2)

Note this means log ′ x = 1/x. An important clue that we are on the right
track is that when defined as above, the function exp is, as we expect, its
own derivative:

exp ′ x = (log−1 x) ′ =
1

log ′(log−1 x)
=

1

log ′(exp x) =
1

1/(exp x) = exp x

But to show that definitions in (2) are indeed proper, we must show that
log is a bijection, and is thus invertible.3 It is the purported inverse of
a function of the form ax, for some unknown positive real a. From the
way one defines exponentiation to a real power,4 the range of this latter
function is at most R+—and so, we first check if R+ could be the domain
of log. As 1/y is continuous for y ∈ R+, the integral ∫x

1
1/t dt is well-

defined for any x ∈ R+—and so, we can define the domain of log to be
R+.5 As for its range, we will show it is all of R. We begin by observing
that as, by definition, log ′ x = 1/x, and x > 0, then 1/x > 0, i.e., log ′
is always positive, which means log is strictly increasing. By virtue of
being differentiable over all its domain, log is also continuous all over its
domain. We now require (the corollary to) the following lemma:
Lemma 3. Given positive reals a, b, we have loga+ logb = log(ab).
Proof. Let c > 0 be a real number. We have log ′(cx) = 1/(cx) · c =
1/x—meaning log ′(cx) = log ′ x. Thus there exists a constant k such that,
for all x where the derivative of log is defined, we have log(cx) = log x+
k. In particular, for x = 1 we obtain: log(c · 1) = log 1+k ⇔ log c = k.
From which log(cx) = log x+ log c. The fact that c is arbitrary completes
the proof. ■
Corollary 4. For any positive real a, we have loga−1 = − loga.
Proof. Setting b = 1/a in lemma 3 we have:

0 = log
(
a× 1

a

)
= loga+ log 1

a
⇔ loga−1 = − loga

■
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Corollary 5. For any positive real x, and integer n, we have log xn =
n log x.
Proof. Forn = 0 it is obvious. Forn > 0, in lemma 3 set a = b = x, and
use induction on n. For n < 0, write log xn as log(x−1)−n. As −n > 0,
by the previous induction it follows that this is equal to −n log x−1—and
from corollary 4, this equals n log(x−1)−1 = n log x. ■

We can now show that the range of log is indeed R, by showing that
for any y ∈ R, the equation log x = y has always one solution (it can-
not have more than one solution, because that would mean it was not
injective—and thus not strictly increasing). To show this so, by the def-
inition of log, we clearly have log 2 > 0—and thus, also y/(log 2) ̸= 0.
Hence, we can find integers m,n such that m < y/(log 2) < n ⇔
m log 2 < y < n log 2 ⇔ log 2m < y < log 2n. By the Intermediate
Value Theorem, there exists x ∈ ]2m, 2n[ such that log x = y.

This suffices to show that definitions (2) are proper—but we want to
go further: log was defined as the putative inverse of a function of the
form ax, for some positive real a, and exp being the inverse of log, we
want to express it in this form as well (i.e., we want to find a real a such
that exp x = ax). This requires the following lemma.
Lemma 6. Let f be a continuous function, for which it holds that f(x+y) =
f(x)f(y), f(0) = 1 and f(1) = a > 0. Then f(x) = ax.
Proof. Let us first prove that it holds for positive integers (let n be one
such integer):

f(n) = f(1+ 1+ · · ·+ 1︸ ︷︷ ︸
n times

) = f(1) · · · f(1)︸ ︷︷ ︸
n times

= an

Now let us show that also holds for negative integers:
1 = f(0) = f(n+ (−n)) = f(n)f(−n)

⇔ f(−n) =
1

f(n)
=

1

an
= (an)−1 = a−n

And now for rational numbers, let m,n be integers, with n > 0. We
have:

am = f(m) = f

(
m

n
+ · · ·+ m

n︸ ︷︷ ︸
n times

)
= f

(m
n

)
· · · f(m

n
)︸ ︷︷ ︸

n times⇔ f
(m
n

)
=

n
√
am = am/n

And finally, for real numbers, let x be a real, and {xn} be a Cauchy se-
quence of rational terms, such that xn → x. Because f is continuous, we
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have f(x) = f(limn→+∞ xn) = limn→+∞ f(xn) = limn→+∞ axn which is,
by definition, ax. ■

We have already established that exp 0 = 1—and so, for exp to verify
the conditions of lemma 6, it remains only to show that exp 1 > 0 and
exp(x+ y) = exp x · expy.

To compute exp 1, exp being indefinitely differentiable and having all
the derivatives be continuous as well, means that its Taylor series at point
x = 0 converges for all x in its domain (as exp 0 = 1, all the derivatives
at x = 0 equal 1):6

exp x =

+∞∑
n=0

xn

n!

Setting x = 1, it is now immediate that exp 1 = 1+ 1+ 1/2+ 1/6+ . . .

is a positive real number, that we shall denote by e.
To show that exp(x+y) = exp x · expy, let x ′ = exp x ⇔ x = log x ′

and y ′ = expy ⇔ y = logy ′. We have:
exp(x+ y) = exp(log x ′ + logy ′)

= exp(log(x ′y ′)) (lemma 3)
= x ′y ′ = exp x · expy

Hence by lemma 6 we conclude that exp x = ex. And we are (almost)
ready to return to our initial goal of differentiating ax—but first, we need
the following generalization of corollary 5:
Lemma 7. For any positive real a and real b, we have logab = b loga.

Proof. logab = log
[(
eloga

)b]
= log (eb loga) = b loga. ■

It is now straightforward that:

(ax) ′ =
[(
eloga

)x] ′
=

(
ex loga

) ′
= ex loga · loga = ax · loga (8)

This also shows that just like exp, ax is also continuous over all of R.
Comparing this with (1), it is immediate that

lim
h→0

(ah − 1)

h
= loga

In particular, if a = e, we obtain the well-known limit

lim
x→0

(ex − 1)

x
= log e = 1

Base of a logarithm. Just as log is the inverse of exp x = ex, we can
have logarithms that are inverses for exponentials with other bases other
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than e. In particular, the inverse of bx is denoted logb x. We have the
following “change of base” property:

logb a =
logc a
logc b

(9)

Why this holds is straightforward: logb a · logc b = logc blogb a = logc a.
And from (9) it can be easily shown that lemmas 3 and 7 also hold for
logarithms with arbitrary bases:

• logc a+ logc b = loga
log c +

logb
log c = loga+logb

log c = log(ab)
log c = logc(ab)

• logc ab = logab

log c = b loga
log c = b loga

log c = b logc a
Finally, for completeness, just as in (8) we computed the derivative of an
exponential function with an arbitrary base, here is the derivative for a
logarithm with an arbitrary base (it follows directly from the chain rule
for derivatives):

(logb x) ′ =
1

x logb

Notes
1. I have a forthcomingmanuscript on the construction of (inter alia) the real numbers,

using Cauchy sequences—and I will update this note once it is published—to which the
reader is (to be) referred for more details. For the reason why a is required to be positive,
see §3 and §4 in my essay on exponentiation rules, https://randomwalk.eu/media/
Scholarship/Exponentiation.in.R.pdf.
2. Cf. note 1, in particular §3 and §4 of Exponentiation.in.R.pdf, for the reasons

why the range of f is R+, i.e., why ax is always positive.
3. Note that the assumption made in (1)—namely that the limit limh→0(a

h − 1)/h
existed—is now irrelevant. It was an aid to help us arrive at putative definition (2), but
it plays no role in establishing that it is a proper definition.
4. See the reference in note 2.
5. Note that by this definition log x < 0 for 0 < x < 1, log 1 = 0, and log x > 0

otherwise.
6. I omit here the statements and proofs of the relevant theorems. But see, e.g., §3

(and the references therein) in my manuscript on the sine and cosine functions, https:
//randomwalk.eu/scholarship/sine-cosine/.
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