
Building a tabular environment, via LATEX macros…
I wanted to write a LATEX macro to output something like the following:
\left(\begin{tabular}{cccc}
1 & 2 & 3 & 4 \\%
#1 & #2 & #3 & #4

\end{tabular}\right)

It would turn out o be quite the project. But on a first approach, it was rather
simple.
\newcommand\perm[4]{\left(\begin{tabular}{cccc}
1 & 2 & 3 & 4 \\%
#1 & #2 & #3 & #4

\end{tabular}\right)}

This command can then be invoked as, for example, \perm{1}{2}{3}{4}, for the
identity permutation. But what I really wanted was a command I could invoke like
this: \perm{3, 1, 4, 2, 5, 6}, and that would produce:� 1 2 3 4 5 6

3 1 4 2 5 6
�

(1)

That is, I wanted the number of columns to be detected automatically, from the
macro’s input. The first task, is to detect the number of arguments. This is done
as follows:
\usepackage{etoolbox} % Required for \forcsvlist.

\newcounter{lmax}

\setcounter{lmax}{0}
\forcsvlist{\incCounterMax}{#1}

\newcommand{\incCounterMax}[1]{\stepcounter{lmax}}

Recall that #1 contains 3, 1, 4, 2, 5, 6. The \forcsvlist calls the macro
\incCounterMax for each element in the comma separated list, which increments
by 1 the lmax, once for each element in the list. Thus lmax now has the value 6.

Anote about counters. To be able to call themacromultiple times, any \newcounter{countername}
command must be outside of the macro definition. Otherwise, when running it for
the second time, LATEX will complain that the counter is already defined… Further-
more, one must, insofar as possible, try to use unique counter names, because they

1

all inhabit the same space. That is why they are prefixed with ’l’ (standing for
“local”).

Moving on, the next task, is to produce the first line, which in our example, con-
sists of the numbers 1 to 6. This is done as follows (already inside the tabular
environment):
\usepackage{forloop} % Required for \forloop.

\newcounter{lctr}

\newcounter{laux}
\setcounter{laux}{0}
\addtocounter{laux}{\value{lmax}+1}

\left(\begin{tabular}{*{\thelmax}{c}}
1%
\forloop[1]{lctr}{2}{\value{lctr} < \value{laux}}{%

&\arabic{lctr}%
}\\%

\end{tabular}\right)

First, in the declaration of the tabular environment, the *{\thelmax}{c} is
a trick specify the number of columns dinamically—in this case, it is stored in
the lmax counter, the value of which, for non-arithmetic purposes, is access as
\thelmax.
Next, the \forloop works much like a C for loop; it is equivalent to the following
for(lctr = 2; lctr < laux; lctr++) (the optional argument for \forloop
specifies the increment value, in this case 1). The values start at 2 to be able
to stack an ampersand (&) between them, but not after the last one (or before
the first). But there is another catch: we want the values from 1 to 6, so the
condition such be lctr <= lmax (lmax = 6); however, <= is invalid in LATEX,
and so I use another counter, laux, to store the value 6 + 1 = 7, obtaining the
condition lctr < 7, which also works. The \arabic command simply tells LATEX
to print the number in the counter, as an Arabic numeral. But that for arithmetic
purposes, we need to access the counter value as \value{coutername}.
Next came the really really tricky part: to iterate over the numbers given in the
input, and to produce the second row, adding an ampersand (&) between them!
To cut a very long story short, this cannot be done inside the tabular environment,
because in LATEX, the ampersand actually stands for }{, which wreaks havoc among
tabular’s internals (and many other things). This means that one has to build the

2

second line, in a separate macro…(recall that #1 contains 3, 1, 4, 2, 5, 6)1

\usepackage{pgffor} % For \foreach command.

\def\zz{}
\foreach \i [count=\ni] in {#1} {%

\ifnum\ni=1 \xdef\zz{\i} \else \xdef\zz{\zz & \i}\fi}

It is the \zz that then gets called inside the tabular environment. Here is the full
code (note that inside a \newcommand, there can be no empty lines!):
\usepackage{etoolbox}
\usepackage{forloop}
\usepackage{pgffor}

% the 'l' prefix stands for local, to try to avoid counter name clashes...
\newcounter{lmax}
\newcounter{laux}
\newcounter{lctr}

\newcommand{\incCounterMax}[1]{\stepcounter{lmax}}

\newcommand\perm[1]{%
\def\zz{}

\foreach \i [count=\ni] in {#1} {%
\ifnum\ni=1 \xdef\zz{\i} \else \xdef\zz{\zz & \i}\fi}

%
\setcounter{lmax}{0}
\forcsvlist{\incCounterMax}{#1}
%
\setcounter{laux}{0}
\addtocounter{laux}{\value{lmax}+1}
%
\left(\begin{tabular}{*{\thelmax}{c}}

1%
\forloop[1]{lctr}{2}{\value{lctr} < \value{laux}}{%
&\arabic{lctr}%

}\\%
\zz

\end{tabular}\right)}
1The code below was partially taken from https://tex.stackexchange.com/questions/

432274/use-array-meaningful-ampersand-to-change-column-in-foreach-loop.

3

https://tex.stackexchange.com/questions/432274/use-array-meaningful-ampersand-to-change-column-in-foreach-loop
https://tex.stackexchange.com/questions/432274/use-array-meaningful-ampersand-to-change-column-in-foreach-loop

When used like this:
\begin{equation}

\perm{3, 1, 4, 2, 5, 6}
\end{equation}

The result is: � 1 2 3 4 5 6
3 1 4 2 5 6

�
(2)

4

